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Motivations

m Stop-and-go waves: Emerge from collective behavior.
m Ring-road experiments: Confirm oscillations [Treiterer 74].

Figure: Sugiyama et al 2008 Figure: Stern et al 2018
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Modeling Approaches & Contribution

m Microscopic (ODEs) models:

m OV-FTL: [Bando et al 1995, Cui et al 2017]
= Macroscopic (PDEs):

m ARZ model [Aw and Rascle 2000, Zhang 2002]
m Micro/Macro:

m Link ARZ and OV-FTL [Aw et al 2002]
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Second order driver models on a ring



Second order driver models on a ring

m Model (ODEs):
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OV-FTL model

Example: OV-FTL Model
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Collision prevention

Desired velocity



OV-FTL model

Example: OV-FTL Model

¥ i‘i—O—l — X .
xl “ ($L+1 — xL)Q + ( (':L"L+1 1:1) ':U’L)
——

Collision prevention

Desired velocity

Key Features:
m a,b : control gains.

m V(-) : Desired velocity (inspired from FD), decreasing with
the inverse of the interdistance "density" (e.g., Greenshield's
model).



OV-FTL model

Example: OV-FTL Model

¥ Ct'75—0—1 — X .
xl “ ($L+1 — xL)Q + ( ($Z+1 ZB’L) ;UZ)
——

Collision prevention

Desired velocity

Key Features:
m a,b : control gains.

m V(-) : Desired velocity (inspired from FD), decreasing with
the inverse of the interdistance "density" (e.g., Greenshield's
model).

How to deduce a continuous model?



Continuation method



Continuation method—Base steps

Based on: [Nikitin, Canudas-de-Wit, Frasca, TAC 21]

See discrete set (2;);=1,...,n as a continuum of vehicles
described by a function z(t, M) : Ry x [0, N] with value in
[0,27) such that z(¢,7) = ;(t);
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Continuation method—Base steps

Based on: [Nikitin, Canudas-de-Wit, Frasca, TAC 21]

See discrete set (2;);=1,...,n as a continuum of vehicles
described by a function z(t, M) : Ry x [0, N] with value in
[0,27) such that z(¢,7) = ;(t);

Moskowitz function M (¢, x) : number of vehicles upstream
the point x at time ¢ from the point x(¢,0);

Define the density p and flux ¢ of the vehicles in function of
M and write the conservation law satisfied by the Moscowitz
function;

Define the speed variable v and do Taylor approximations to
obtain PDEs.



Continuation Process—details

Notations: p : density, v : velocity

Approximations:

T = T, /U%j:’iu 815’1}%.'.131‘,
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Ti+1 — T4



Continuation Process—details

Notations: p : density, v : velocity
Approximations:
T = T, /U%j:iu 815’1}%.;131‘,
1

PR ————, Opv R djpy — 4y, 15-order
Ti+1 — Ti

Interpretation Moskowitz function:
p(t,z) =0,M and ¢:=vp=-0M
oz . . 0 Ox
Titl] — T N ——, Tiy1 —Ti .
) VAR ) Vi
By consistency: 0y, M = 9,.+M, leading to
Op + 0z (pv) =0, p(t,0) = p(t,2m), Vit >0,
ow=f(,50), u(t,0) = v(t,27), ¥t >0.



Stability analysis
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From Modeling to Stability Analysis

m We have shown how to derive a macroscopic model (PDE
for the vehicle density) from a microscopic car-following
model by passing to the continuum limit.

m This raises the following natural question:

Are the stability properties of equilibrium configurations
preserved when passing from the microscopic to the macroscopic
model?

m The next section addresses this question by comparing the
stability of equilibria in both frameworks.
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Instability analysis OV-FTL (1)

Definition

A pair of real positive numbers (d*, v*) is called a homogeneous
equilibrium of the OV-FTL model if, for all i =1,..., N,

Ti41 — T4 = d*, ii—i—l — ii = O, and .’i?i =¥

imply that the acceleration &; is zero.
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Instability analysis OV-FTL (1)

Definition

A pair of real positive numbers (d*, v*) is called a homogeneous
equilibrium of the OV-FTL model if, for all i =1,..., N,

Ti41 — T4 = d*, ii-ﬁ-l — ii = 0, and .’i]i =¥
imply that the acceleration &; is zero.

At a homogeneous equilibrium:
m the vehicles are evenly spaced by a distance d*

m each vehicle moves at the constant speed v*
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Instability analysis OV-FTL (2)

Proposition (Cui et al 2017)

The homogeneous equilibrium points of the OV-FTL model is
locally unstable if and only if the following inequality holds

o (576)2 _2V/(d*) < 0. (1)
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Instability analysis OV-FTL (2)

Proposition (Cui et al 2017)

The homogeneous equilibrium points of the OV-FTL model is
locally unstable if and only if the following inequality holds

o (576)2 _2V/(d*) < 0. (1)

= Stop and go phenomena
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Macroscopic OV-FTL

Continuation method = hyperbolic system:

o |p voop o |p 0

il —_ = 2

sl b lwll-bog-ol @
with periodic boundaries.

m p=1/d* and v = v* is an equilibrium point of the hyperbolic
system.
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Macroscopic OV-FTL

Continuation method = hyperbolic system:

s+l & l-bed-g e

with periodic boundaries.
m p=1/d* and v = v* is an equilibrium point of the hyperbolic
system.

The equilibrium point of the hyperbolic is locally unstable if
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Macroscopic OV-FTL

Continuation method = hyperbolic system:

s+l & l-bed-g e

with periodic boundaries.
m p=1/d* and v = v* is an equilibrium point of the hyperbolic
system.

The equilibrium point of the hyperbolic is locally unstable if

a+v*(d")? < (d")°V'(d"). (3)

m If a enough small, instability of equilibrium points of

macroscopic and microscopic points aligns.
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Conclusion
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Conclusion

m Generic method to transform a microscopic model into a
macroscopic model
m Instability equilibrium points are preserved
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Conclusion

m Generic method to transform a microscopic model into a

macroscopic model
m Instability equilibrium points are preserved

Next questions:
m How to use the continuation method to stabilize?

ODE o PDE
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