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Motivations

Stop-and-go waves: Emerge from collective behavior.
Ring-road experiments: Confirm oscillations [Treiterer 74].

Figure: Sugiyama et al 2008 Figure: Stern et al 2018
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Modeling Approaches & Contribution

Microscopic (ODEs) models:
OV-FTL: [Bando et al 1995, Cui et al 2017]

Macroscopic (PDEs):
ARZ model [Aw and Rascle 2000, Zhang 2002]

Micro/Macro:
Link ARZ and OV-FTL [Aw et al 2002]

Contribution:
Systematic method
Stability analysis
Open control
questions
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Second order driver models on a ring

Model (ODEs):

ẍi = f
(

xi+1 − xi︸ ︷︷ ︸
interdistance

, ẋi+1 − ẋi︸ ︷︷ ︸
intervelocity

, ẋi︸︷︷︸
velocity

)
, ∀i = 1, · · · , N, ∀t ≥ 0

N vehicles
xi = xi mod 2π, xi ∈ [0, 2π)
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OV-FTL model

Example: OV-FTL Model

ẍi = a
ẋi+1 − ẋi

(xi+1 − xi)2︸ ︷︷ ︸
Collision prevention

+ b
(
V (xi+1 − xi) − ẋi

)︸ ︷︷ ︸
Desired velocity

Key Features:
a, b : control gains.
V (·) : Desired velocity (inspired from FD), decreasing with
the inverse of the interdistance "density" (e.g., Greenshield’s
model).

How to deduce a continuous model?
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Continuation method–Base steps

Based on: [Nikitin, Canudas-de-Wit, Frasca, TAC 21]

1 See discrete set (xi)i=1,··· ,N as a continuum of vehicles
described by a function x(t, M) : R+ × [0, N ] with value in
[0, 2π) such that x(t, i) = xi(t);

2 Moskowitz function M(t, x) : number of vehicles upstream
the point x at time t from the point x(t, 0);

3 Define the density ρ and flux φ of the vehicles in function of
M and write the conservation law satisfied by the Moscowitz
function;

4 Define the speed variable v and do Taylor approximations to
obtain PDEs.
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Continuation Process–details

Notations: ρ : density, v : velocity
Approximations:

x ≈ xi, v ≈ ẋi, ∂tv ≈ ẍi,

ρ ≈ 1
xi+1 − xi

, ∂xv ≈ ẋi+1 − ẋi, 1st-order

Interpretation Moskowitz function:

ρ(t, x) = ∂xM and φ := vρ = −∂tM

xi+1 − xi ≈ ∂x

∂M
, ẋi+1 − ẋi ≈ ∂

∂M

∂x

∂t
.

By consistency: ∂txM = ∂xtM , leading to ∂tρ + ∂x(ρv) = 0,

∂tv = f
(

1
ρ , ∂v

∂x , v
)

,

{
ρ(t, 0) = ρ(t, 2π), ∀t ≥ 0,

v(t, 0) = v(t, 2π), ∀t ≥ 0.
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From Modeling to Stability Analysis

We have shown how to derive a macroscopic model (PDE
for the vehicle density) from a microscopic car-following
model by passing to the continuum limit.

This raises the following natural question:

Main Question
Are the stability properties of equilibrium configurations

preserved when passing from the microscopic to the macroscopic
model?

The next section addresses this question by comparing the
stability of equilibria in both frameworks.
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Instability analysis OV-FTL (1)

Definition
A pair of real positive numbers (d∗, v∗) is called a homogeneous
equilibrium of the OV-FTL model if, for all i = 1, . . . , N ,

xi+1 − xi := d∗, ẋi+1 − ẋi = 0, and ẋi = v∗

imply that the acceleration ẍi is zero.

At a homogeneous equilibrium:
the vehicles are evenly spaced by a distance d∗

each vehicle moves at the constant speed v∗
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Instability analysis OV-FTL (2)

Proposition (Cui et al 2017)

The homogeneous equilibrium points of the OV-FTL model is
locally unstable if and only if the following inequality holds

a − 2b

(d∗)2 − 2V ′(d∗) < 0. (1)

=⇒ Stop and go phenomena
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Macroscopic OV-FTL

Continuation method =⇒ hyperbolic system:

∂

∂t

[
ρ
v

]
+

[
v ρ
0 −aρ2

]
∂

∂x

[
ρ
v

]
=

[
0

b
(
V

(
1
ρ

)
− v

)]
(2)

with periodic boundaries.
ρ = 1/d∗ and v = v∗ is an equilibrium point of the hyperbolic
system.

Proposition
The equilibrium point of the hyperbolic is locally unstable if

a + v∗(d∗)2 < (d∗)3V ′(d∗). (3)

If a enough small, instability of equilibrium points of
macroscopic and microscopic points aligns.
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Conclusion

Generic method to transform a microscopic model into a
macroscopic model
Instability equilibrium points are preserved

Next questions:
How to use the continuation method to stabilize?
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