From Microscopic Driver Models to Macroscopic PDEs in Ring Road Traffic Dynamics

Sébastien Fueyo Carlos Canudas de Wit

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, GIPSA-Lab

European Control Conference, 2025

Motivations

- **Stop-and-go waves**: Emerge from collective behavior.
- Ring-road experiments: Confirm oscillations [Treiterer 74].

Figure: Sugiyama et al 2008 Figure: Stern et al 2018

Modeling Approaches & Contribution

- Microscopic (ODEs) models:
 - OV-FTL: [Bando et al 1995, Cui et al 2017]
- Macroscopic (PDEs):
 - ARZ model [Aw and Rascle 2000, Zhang 2002]
- Micro/Macro:
 - Link ARZ and OV-FTL [Aw et al 2002]

Contribution:

- Systematic method
- Stability analysis
- Open control questions

- 1 Second order driver models on a ring
- 2 Continuation method
- 3 Stability analysis
- 4 Conclusion

Second order driver models on a ring

■ Model (ODEs):

$$\ddot{x}_i = f\big(\underbrace{x_{i+1} - x_i}_{\text{interdistance}}, \underbrace{\dot{x}_{i+1} - \dot{x}_i}_{\text{intervelocity}}, \underbrace{\dot{x}_i}_{\text{velocity}}\big), \quad \forall i = 1, \cdots, N, \quad \forall t \geq 0$$

- N vehicles
- $x_i = x_i \bmod 2\pi, \quad x_i \in [0, 2\pi)$

F

OV-FTL model

Example: OV-FTL Model

$$\ddot{x}_i = \underbrace{a\frac{\dot{x}_{i+1} - \dot{x}_i}{(x_{i+1} - x_i)^2}}_{\text{Collision prevention}} + \underbrace{b\big(V(x_{i+1} - x_i) - \dot{x}_i\big)}_{\text{Desired velocity}}$$

OV-FTL model

Example: OV-FTL Model

$$\ddot{x}_i = \underbrace{a\frac{\dot{x}_{i+1} - \dot{x}_i}{(x_{i+1} - x_i)^2}}_{\text{Collision prevention}} + \underbrace{b(V(x_{i+1} - x_i) - \dot{x}_i)}_{\text{Desired velocity}}$$

Key Features:

- \bullet a, b: control gains.
- $lackbox{ $V(\cdot)$: Desired velocity (inspired from FD), decreasing with the inverse of the interdistance "density" (e.g., Greenshield's model).$

 ϵ

OV-FTL model

Example: OV-FTL Model

$$\ddot{x}_i = \underbrace{a\frac{\dot{x}_{i+1} - \dot{x}_i}{(x_{i+1} - x_i)^2}}_{\text{Collision prevention}} + \underbrace{b(V(x_{i+1} - x_i) - \dot{x}_i)}_{\text{Desired velocity}}$$

Key Features:

- \bullet a, b: control gains.
- $lackbox{V}(\cdot)$: Desired velocity (inspired from FD), decreasing with the inverse of the interdistance "density" (e.g., Greenshield's model).

How to deduce a continuous model?

- 1 Second order driver models on a ring
- 2 Continuation method
- 3 Stability analysis
- 4 Conclusion

Based on: [Nikitin, Canudas-de-Wit, Frasca, TAC 21]

I See discrete set $(x_i)_{i=1,\cdots,N}$ as a continuum of vehicles described by a function $x(t,M):\mathbb{R}_+\times[0,N]$ with value in $[0,2\pi)$ such that $x(t,i)=x_i(t)$;

Based on: [Nikitin, Canudas-de-Wit, Frasca, TAC 21]

- I See discrete set $(x_i)_{i=1,\cdots,N}$ as a continuum of vehicles described by a function $x(t,M):\mathbb{R}_+\times[0,N]$ with value in $[0,2\pi)$ such that $x(t,i)=x_i(t)$;
- 2 Moskowitz function M(t,x): number of vehicles upstream the point x at time t from the point x(t,0);

Based on: [Nikitin, Canudas-de-Wit, Frasca, TAC 21]

- I See discrete set $(x_i)_{i=1,\cdots,N}$ as a continuum of vehicles described by a function $x(t,M):\mathbb{R}_+\times[0,N]$ with value in $[0,2\pi)$ such that $x(t,i)=x_i(t)$;
- 2 Moskowitz function M(t,x): number of vehicles upstream the point x at time t from the point x(t,0);
- 3 Define the density ρ and flux φ of the vehicles in function of M and write the conservation law satisfied by the Moscowitz function;

Based on: [Nikitin, Canudas-de-Wit, Frasca, TAC 21]

- I See discrete set $(x_i)_{i=1,\cdots,N}$ as a continuum of vehicles described by a function $x(t,M):\mathbb{R}_+\times[0,N]$ with value in $[0,2\pi)$ such that $x(t,i)=x_i(t)$;
- 2 Moskowitz function M(t,x): number of vehicles upstream the point x at time t from the point x(t,0);
- 3 Define the density ρ and flux φ of the vehicles in function of M and write the conservation law satisfied by the Moscowitz function;
- $\begin{tabular}{ll} \bf 4 & {\bf Define the speed variable} \ v \ {\bf and do Taylor approximations to} \\ {\bf obtain PDEs.} \end{tabular}$

Continuation Process-details

Notations: ρ : density, v : velocity

Approximations:

$$x pprox x_i, \quad v pprox \dot{x}_i, \quad \partial_t v pprox \ddot{x}_i,$$

$$\rho pprox rac{1}{x_{i+1} - x_i}, \quad \partial_x v pprox \dot{x}_{i+1} - \dot{x}_i, \ 1^{st} ext{-order}$$

g

Continuation Process-details

Notations: ρ : density, v : velocity

Approximations:

$$x pprox x_i, \quad v pprox \dot{x}_i, \quad \partial_t v pprox \ddot{x}_i,$$

$$\rho pprox rac{1}{x_{i+1} - x_i}, \quad \partial_x v pprox \dot{x}_{i+1} - \dot{x}_i, \ 1^{st} ext{-order}$$

Interpretation Moskowitz function:

$$\begin{split} \rho(t,x) &= \partial_x M \quad \text{and} \quad \varphi := v \rho = -\partial_t M \\ x_{i+1} - x_i &\approx \frac{\partial x}{\partial M}, \quad \dot{x}_{i+1} - \dot{x}_i \approx \frac{\partial}{\partial M} \frac{\partial x}{\partial t}. \end{split}$$

By consistency: $\partial_{tx}M=\partial_{xt}M$, leading to

$$\begin{cases} \partial_t \rho + \partial_x(\rho v) = 0, \\ \partial_t v = f\left(\frac{1}{\rho}, \frac{\partial v}{\partial x}, v\right), \end{cases} \qquad \begin{cases} \rho(t, 0) = \rho(t, 2\pi), & \forall t \ge 0, \\ v(t, 0) = v(t, 2\pi), & \forall t \ge 0. \end{cases}$$

- 1 Second order driver models on a ring
- 2 Continuation method
- 3 Stability analysis
- 4 Conclusion

From Modeling to Stability Analysis

- We have shown how to derive a macroscopic model (PDE for the vehicle density) from a microscopic car-following model by passing to the continuum limit.
- This raises the following natural question:

Main Question

Are the **stability properties of equilibrium configurations** preserved when passing from the microscopic to the macroscopic model?

The next section addresses this question by comparing the stability of equilibria in both frameworks.

Instability analysis OV-FTL (1)

Definition

A pair of real positive numbers (d^*, v^*) is called a *homogeneous* equilibrium of the OV-FTL model if, for all i = 1, ..., N,

$$x_{i+1} - x_i := d^*, \quad \dot{x}_{i+1} - \dot{x}_i = 0, \quad \text{and} \quad \dot{x}_i = v^*$$

imply that the acceleration \ddot{x}_i is zero.

Instability analysis OV-FTL (1)

Definition

A pair of real positive numbers (d^*, v^*) is called a *homogeneous* equilibrium of the OV-FTL model if, for all $i=1,\ldots,N$,

$$x_{i+1} - x_i := d^*, \quad \dot{x}_{i+1} - \dot{x}_i = 0, \quad \text{and} \quad \dot{x}_i = v^*$$

imply that the acceleration \ddot{x}_i is zero.

At a homogeneous equilibrium:

- lacktriangle the vehicles are evenly spaced by a distance d^*
- lacksquare each vehicle moves at the constant speed v^*

Instability analysis OV-FTL (2)

Proposition (Cui et al 2017)

The homogeneous equilibrium points of the OV-FTL model is locally unstable if and only if the following inequality holds

$$a - \frac{2b}{(d^*)^2} - 2V'(d^*) < 0.$$
(1)

Instability analysis OV-FTL (2)

Proposition (Cui et al 2017)

The homogeneous equilibrium points of the OV-FTL model is locally unstable if and only if the following inequality holds

$$a - \frac{2b}{(d^*)^2} - 2V'(d^*) < 0.$$
(1)

⇒ Stop and go phenomena

Macroscopic OV-FTL

Continuation method \implies hyperbolic system:

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ v \end{bmatrix} + \begin{bmatrix} v & \rho \\ 0 & -a\rho^2 \end{bmatrix} \frac{\partial}{\partial x} \begin{bmatrix} \rho \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ b \left(V \left(\frac{1}{\rho} \right) - v \right) \end{bmatrix} \tag{2}$$

with periodic boundaries.

 $\quad \ \ \, \rho = 1/d^* \mbox{ and } v = v^* \mbox{ is an equilibrium point of the hyperbolic system.}$

Macroscopic OV-FTL

Continuation method \implies hyperbolic system:

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ v \end{bmatrix} + \begin{bmatrix} v & \rho \\ 0 & -a\rho^2 \end{bmatrix} \frac{\partial}{\partial x} \begin{bmatrix} \rho \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ b \left(V \left(\frac{1}{\rho} \right) - v \right) \end{bmatrix}$$
 (2)

with periodic boundaries.

 $\quad \ \ \, \rho = 1/d^* \ \, \text{and} \ \, v = v^* \ \, \text{is an equilibrium point of the hyperbolic system}.$

Proposition

The equilibrium point of the hyperbolic is locally unstable if

$$a + v^*(d^*)^2 < (d^*)^3 V'(d^*).$$
 (3)

Macroscopic OV-FTL

Continuation method \implies hyperbolic system:

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ v \end{bmatrix} + \begin{bmatrix} v & \rho \\ 0 & -a\rho^2 \end{bmatrix} \frac{\partial}{\partial x} \begin{bmatrix} \rho \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ b \left(V \left(\frac{1}{\rho} \right) - v \right) \end{bmatrix}$$
 (2)

with periodic boundaries.

 $\quad \ \ \, \rho = 1/d^* \ \mbox{and} \ v = v^* \ \mbox{is an equilibrium point of the hyperbolic system}.$

Proposition

The equilibrium point of the hyperbolic is locally unstable if

$$a + v^*(d^*)^2 < (d^*)^3 V'(d^*).$$
 (3)

If a enough small, instability of equilibrium points of macroscopic and microscopic points aligns.

- 1 Second order driver models on a ring
- 2 Continuation method
- 3 Stability analysis
- 4 Conclusion

Conclusion

- Generic method to transform a microscopic model into a macroscopic model
- Instability equilibrium points are preserved

Conclusion

- Generic method to transform a microscopic model into a macroscopic model
- Instability equilibrium points are preserved

Next questions:

How to use the continuation method to stabilize?

